10 research outputs found

    Larval Transport Modeling of Deep-Sea Invertebrates Can Aid the Search for Undiscovered Populations

    Get PDF
    Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.Irish Research Council for Science, Engineering and TechnologyScience Foundation Irelan

    Structural and hyperfine properties of Mn and Co-incorporated akaganeites

    No full text
    The structural and hyperfine properties of pure and substituted akaganeites prepared in the presence of Mn, Co and urea are presented and discussed. In all samples, the chloride content increased with the increase in the urea concentration of the parent solution, and a small Mn-for-Fe or Co-for-Fe substitution occurred. In pure akaganeites, the increase of urea concentration provoked an enlargement of the unit cell volume and a decrease of the crystallinity of the synthesised oxides. The incorporation of Mn and Co provoked changes in cell parameters and an increase in the crystallinity of the samples. The hyperfine parameters for both iron sites of the akaganeites remained practically unchanged, and the spectral areas of the iron sites located close to the chlorides decreased for the doped samples. The recoilless f-factor increased for the substituted akaganeites, indicating an increase in the strength of the atomic bonding of the iron ions.Fil: Tufo, Ana Elisabeth. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Inst Quim Fisica D/l/materiales Med Amb y Energ; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: GarcĂ­a, Karen E.. Universidad de Antioquia. Grupo de Estado SĂłlido, Facultad de Ciencias Exactas y Naturales; ColombiaFil: Barrero, Cesar A.. Universidad de Antioquia.Grupo de Estado SĂłlido, Facultad de Ciencias Exactas y Naturales; ColombiaFil: Sileo, Elsa E.. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Inst Quim Fisica D/l/materiales Med Amb y Energ; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentin

    Microbiological effects of sublethal levels of antibiotics

    No full text
    corecore